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The finite-element method is used to solve a problem concerning the heat trans- 
fer through a wall separating two rectangular channels. Calculations are per- 
formed to establish the distributions of temperature, velocity, heat flux, 
shear stress, and Nusselt number on the walls of the channels. 

Introduction. The use of plate finning in heat exchangers makes it possible to achieve 
a high level of efficiency and equipment compactness while keeping hydraulic resistance 
comparatively low (relative to the flow across the fins). 

A wide range of different types of surfaces are used in the construction of plate heat 
exchangers. The design of such units is presently based on the use of criterional (empiri- 
cal) relations obtained from generalizations of experimental measurements. The simplicity 
of this approach and the long tradition of its use account for its popularity. However, 
one of the problems encountered here is the long time needed to obtain experimental informa- 
tion in the design of new units and the relatively high cost of this design work. An al- 
ternative approach to the solution of this problem is numerical modeling based on the solu- 
tion of base transport equations for transport processes. The creation of a new generation 
of powerful computers is making it possible to use highly efficient numerical methods to 
satisfactorily model complex physical processes occurring in heat exchangers. The use of 
numerical methods has become so widespread that it is difficult to find an area of scien- 
tific inquiry where they are not employed. 

In the present study, we attempt a direct through calculation of the temperatures and 
velocities in an element of a parallel-flow plate exchanger. The channel being modeled is 
shown in Fig. 1 and is represented by a system of two parallel rectangular channels (which, 
in the general case, have different geometric dimensions). The use of the mathematical 
model and the application package (HEATEX) based on it make it possible to design a system 
of channels with independent flows of a heat-transfer agent having certain thermophysical 
properties and certain initial and boundary conditions. The thermal part of the problem 
will be solved in a conjugate formulation, which precludes inaccuracies and errors in as- 
signing the thermal boundary conditions on the washed part of the perimeter of the channels. 

Before proceeding to the base equations, we should note that the program was realized 
on the basis of the finite-element method (FEM) and that it makes it possible to calculate 
the fields of velocity, temperature, and concentration in individual channels and units of 
different geometry (bundles of finned tubes, annular, rectangular, and axisyrmmetric chan- 
nels, etc.) [i-3]. 

Flow Scheme and Initial Equations. The region of integration contains two parallel 
channels separated by a partition. Heat exchange takes place between the channels. In the 
general case, both exothermic and endothermic reactions can take place in the heat exchang- 
ers. We will examine an incompressible Newtonian fluid and use the assumptions normally 
employed in the absence of thermal and barodiffusion. The system of transport equations 
includes the equations of motion, energy, heat conduction in the wall, diffusion, and con- 
tinuity. With the use of matrix notation, this system can be written as follows: 

aU~ a ~[ aU~ pu~ U~ " ~) aft (1) 
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We used  s t a n d a r d  n o t a t i o n  in  w r i t i n g  s y s t e m  ( 1 - 5 ) .  The s o u r c e  t e rms  O R, 0 i ,  and I R in  
Eqs.  ( 2 - 4 )  d e s c r i b e  t h e  s o u r c e s  ( s i n k s )  o f  h e a t  and mass due t o  c h e m i c a l  r e a c t i o n s ,  as  w e l l  
as internal heat releases (if such occur) in the solid wall and the partition. Although 
certain difficulties are encountered when such sources are calculated (these difficulties 
being related mainly to the presence of nonlinearity), they are not of a fundamental nature. 
The study [2] can serve as an example of the use of the program to calculate heat transfer 
in the presence of internal heat releases (chemical reactions). A mathematical model of 
heat transfer in a chemically reacting flow was examined in considerable detail in this 
study. 

In certain cases (such as with the pressurized flow of an incompressible heat-transfer 
agent in a rectangular channel of constant cross section at large Reynolds numbers), the 
equation of motion can be solved for the longitudinal component of the velocity vector (i.e. 
can be converted to parabolic form with respect to the longitudinal coordinate) by consider- 
ing that the transverse components of velocity are small but nonetheless nontrivial (other- 
wise, the left side of Eq. (i) would completely disappear). Such an approach makes it pos- 
sible to significantly reduce the volume of calculation necessary, although it should be 
noted that no fundamental difficulties are encountered in the calculation of the transverse 
components of velocity. 

We will use an iterative procedure (the Wegstein method) to calculate the source term 
in the equation of motion 8P/Sx i. The physical criterion of convergence will be the equa- 
tion of continuity, which was more conveniently used in the integral form in our investiga- 
tion. 

Boundary Conditions. The computing process was based on the use of a system of equa- 
tions cast in parabolic form with respect to the long axis of the channel. Thus, it is 
necessary to know the inlet profiles of the functions being studied. Most authors (includ- 
ing us) use uniform (planar) profiles at the inlet. Neumann conditions are assigned on the 
lines of symmetry. Conditions of attachment for velocity and compatibility conditions for 
the normal heat fluxes and temperatures are satisfied along the wetted perimeter for the 
energy equation. The simplicity of realizing the attachment conditions on the washed part 
of the perimeter makes it possible to easily model different types and configurations of 
channels. We provided for the use of thermal boundary conditions of the first, second, and 
third type, as well as mixed boundary conditions. 

The program could be further improved in regard to the realization of the boundary 
conditions by employing the "wall law" for the equation of motion. This procedure is now 
widely used and makes it possible to avoid excessive crowding of the finite-element grid 
around the wall. In this case, instead of the Dirichlet boundary condition on the washed 
part of the perimeter, we use the Neumann condition. To calculate the shear stress 

we choose the empirical "wall law" 

au I (6) 

from which we easily obtain 

= ! in (y+ e), (7) 
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The empirical constants entering into (6-8): E = 9.37; K = 0.417; y+ -~ 50-100. 
! ! 

Turbulence Model. The presence of the Reynolds stresses --Puiu j introduces additional 

unknowns into system (1-5). Thus, closing equations are needed to determine them. The 
model developed by N. I. Buleev is sufficiently simple and convenient for channels of arbi- 
trary cross section, this model being a variant of the Prandtl mixing-length models. To 
determine the components of the tensor of the turbulence stresses, we use the traditional 
gradient relation with averaged motion: 

{ oC'j oG ~. (9) 
- o . ;  .; = ~\--G-~ +-G-~ j ,  

oY 
- -pu ;  T ' = e l t  Ox~ ' (I0) 

where ~M and ~H are the coefficients of eddy viscosity and diffusivity, respectively. The 
following expressions were presented in [4] for the determination of these coefficients: 

8~ = 0,2 fo (n) L (n) v*; 
(11) 
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where L is found from the relation 

I _ 1 ? 1 d% (18) 
L 2~ a0 l (~) 

The q u a n t i t y  L(r  e n t e r i n g  i n t o  Eq. (18) i s  t h e  d i s t a n c e  from t h e  t e s t  p o i n t  t o  t h e  c h a n n e l  
w a i l  i n  t h e  d i r e c t i o n  d e t e r m i n e d  by t h e  a n g l e  r I t  s h o u l d  be n o t e d  t h a t  a n a l y t i c a l  ex-  
p r e s s i o n s  for L have been obtained for through sections of certain characteristic geometries. 
For example, for a channel of rectangular cross section, the expression to determine the 
mixing length L has the form 

I 1 

L - ~,y=v-;~ +y~ + ~ / V x ~  + y~ + ~ a vX~ + ~ + ~ v . ~  + d "  (19) 

where x I and x 2 are the distances to the point M from one pair of opposite sides of the 
rectangle; Yz and Y2 are the same for the other pair. There is currently no rigorous theory 
that makes it possible to calculate turbulent diffusion coefficients. They are usually 
found on the basis of the following relation: 

D t  = PrD v__t. (20)  
D 

Numer ica l  Method.  To c o n s t r u c t  a d i s c r e t e  model ,  we s u b d i v i d e d  t h e  r e g i o n  i n t o  a 
f i n i t e  number o f  e l e m e n t s  which in  a g g r e g a t e  a p p r o x i m a t e  t h e  form of  t h e  r e g i o n  we a r e  s t u d y -  
i ng .  We t h e n  used  t h e  n o d a l  v a l u e s  o f  t h e  s o u g h t  v a r i a b l e  t o  c o n s t r u c t  a p o l y n o m i a l  t h a t  
determined the continuous quantity inside the element. The value of the continuous quantity 
at each nodal point was assumed to be variable and had to be determined. 
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An important feature of the finite-element method is that it can be used to efficiently 
solve nonlinear equations which describe processes in bodies of arbitrary form (or flow in 
channels of different configurations) with arbitrary boundary conditions. 

We used linear and quadratic tetragons to solve the formulated problem. Such elements 
have second-order curves as boundaries. The value of the sought functions is determined at 
four or eight nodes located on the sides of the elements (Fig. i). The number of elements 
into which the test region was subdivided was determined on the basis of considerations re- 
lated to the optimum relationship between accuracy, computing time, and the speed of the 
computer. For example, we used 150-200 quadratic elements for the problem being studied 
here. System (1-5) can be represented by a single parabolic equation in which the coeffic- 
ients with the derivatives take values corresponding to their physical significance. In 
other words, in the general case it isnecessary to solve an equation of the following 

form: 

- 

Using the Galerkin method and the approximation in [5]: 

M 

@ (x, y) = ~ N~ (x, y) 0~ (z), 
n = l  

where M is the number of nodes in the element, we can write the condition expressing the 
orthogonality of the error relative to the basis functions: 

o W 

Using Green's transformation for the first and second terms of the last formula, we obtain 

r aN~ a@ 

t =0. 23) 

Integration is performed over the region of the elements, since in the remaining region (by 
definition) the basis functions N i are equal to zero. Inserting the expression for ~(x, y) 
into the last formula and using matrix notation, we write 

[C] -d-~z~} 3- [K]{r + {F} = 0. (24 )  

In this formula, as in all previous and subsequent calculations, we make use of the 
matrix notation normally employed in the FEM: damping matrix [C]; stiffness matrix [K]; 
gradient matrix [B]; load-vector matrix {F}. The expressions used to calculate these 
matrices for each element have the form: 

[Cl(~) = S O~ [NF [N] d~; (25) 

[KJ(e~ = S [ BIT [D] [B] d~ 3- ; • [N]T [N] dS; ( 26 ) 
fa S z 

{F} (e, = - -  ~ @ [N] T df2 3- ; q [N]" dS - -  ; • [N] r dS. ( 2 7 ) 
~- ~ t  $2 

The g l o b a l  m a t r i c e s  f o r  t h e  e n t i r e  ensemble  a r e  o b t a i n e d  by summing t h e  c o n t r i b u t i o n s  o f  
t h e  i n d i v i d u a l  e l e m e n t s ,  which  i s  done in  t h e  u s u a l  manner .  I t  s h o u l d  be n o t e d  t h a t ,  in 
t h e  g e n e r a l  c a s e ,  t h e  c o n d u c t i v i t y  m a t r i x  [D] c o n s i d e r s  t h e  a n i s o t r o p y  o f  t h e  p r o p e r t i e s  o f  
t h e  m a t e r i a l s  (medium) and f o r  t h e  h e a t - c o n d u c t i o n  e q u a t i o n  ( f o r  example )  has  t h e  form 

[D] -- 
s 0 0 
0 s 0 
0 0 s 

(28) 
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Two approaches can be used to integrate over the axis: either the Galerkin procedure 
can be used for unidimensional elements along the z axis or a finite-difference approxima- 
tion can be constructed along this axis. We used the second variant. Thus, integration 
over the flow was done in accordance with an implicit two-level scheme: 

K~+I ~ f + l  + Ci+l (~i+1 - -  ~ ) [ A z  - -  Fi+ 1 = 0. ( 29 ) 

The scheme is nonlinear and the iteration is performed in accordance with the follow- 
ing: 

[ • ( s )  C~ i/~z] ~(s+ I) p(s) (s) ~(s) 
,~+, + ~+, = ~+, ~i+,/hz + ,i+, (30) 

Oscillations which develop during the computation can be eliminated if we simultaneously 
decrease the size of the elements and the step Az. We employed an automatic step selection 
procedure. The steps were chosen using the standard deviation for two adjacent levels. 

The system of algebraic equations was solved by Gauss' direct method, which is accurate 
to within the rounding error. To save memory, the matrices were converted to banded form. 

It should be noted that the information obtained directly in the course of solving the 
system of initial equations, i.e. the local values of the sought functions at the nodes of 
the elements, was analyzed with the use of programs we developed. These programs made it 
possible to integrate local values along specified directions (along the wetted perimeter), 
differentiate at nodal points, determine the norms (standard deviations) for any step zi, 
find and construct isolines of the sought functions, and determine averaged characteristics 
of the sought functions. 

The generation of the initial data on the geometry of the region is important in the 
realization of the FEM. Although this matter is not of fundamental importance (and is thus 
rarely discussed in the literature), most errors arise during the compilation of the coordi- 
nate files and the so-called coupling matrices. In addition, manual compilation of these 
files is inefficient and time-consuming when there is a large number of elements. In con- 
nection with this, below we discuss one possible algorithm for automatic generation of the 
coordinates and coupling matrices for quadratic tetragonal elements. The algorithm can be 
used for both cartesian and polar coordinate systems. 

Generation of a Grid of Elements. To construct the coordinate file CORD(I, J) (which 
in the FEM is most conveniently compiled as a file in which I is the number of the node and 
J is the index of the coordinate - equal to 1 if the X-coordinate is being filled out and 
equal to 2 for the Y-coordinate), we construct the vectors of the coordinate axes XM(I) and 
YM(I). The recursion formulas for determining the nodal coordinates have the form 

for the corner nodes and 

XM (2 r I)----X (I) -~ 

YM ( 2 .  I) =: Y (/) + 

X (I + 1) + X (I) 
2 ! 

Y ( I +  1 ) + Y ( I )  

X M  (2 . I - - 1 )  = X (I), YM ~ . I - - 1 )  = Y (I) 

for the intermediate nodes on the sides of the elements. 

The files X(1) and Y(1) which enter into these relations are the initial data. We 
then follow simple procedures to construct the two-dimensional files CORD X(I, J), CORD Y 
(I, J), which are filled by the "corner" and "side" files XM, YM. The two-dimensional 
files are then converted into files that are convenient for use in the FEM: 

CORD (K, 1) =,CORD X (I, J) I --~,CORD~K,, M), 
CORD (K, 2) ---- CORD Y (I, J) ] 

K =  1, NEL, M =  1, 2. 

The i n d e x  m a t r i x  i s  g e n e r a t e d  by means o f  t h e  f o l l o w i n g  c y c l e s :  
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.7. Z ( 

'>---(D---< ) 
NOP(K~LJ 

/-.=1,8 

NOP (K, 6) -- (7 + I) 

2. 
N= is 
N v is 

LX 

I ' I+1 1+2 "f 

K = I  
DO 1 I---- 1, LX2,2 

DO i J = l ,  LF2,2 

NOP (K, 1) = J + (LF + NY) ( I - -  1)/2 

NOP (K, 8) = (d + 1) + (LY + NY) (I - -  1)/2 

NOP (K, 7) = (d + 2) + (LY + NY) (I - -  1)/2 

NOP(K, 3)=,I  + ( L Y  + NY) (~ -~ - ) -+  1) 

NOP (K, 4) = (J + t) (LY + Ny) (I-21- + 1) 

NOP(K, 5) = (J + 2) +(LY-}-  NY) ( ~  --~ + .1) 

1. K = K + l  

K - - 1  
DO 2 1 = 2 ,  LXI,2 

DO 2 J = 1, MY 

NOP (K, 2) = J + LY , I-~ + NY ( -~  

+ L Y * -  + NY --  1 
2 

K = K + I  
the number of nodes for X 

the number of nodes for Y 

= 2 , N X - - I  

LY= 2 .NY--  1 
LX 2 ---- LX -- 2 
iF2 = iV -- 2 

iX I = LX- I 

MY = N Y -  I 

Results and Discussion. As was noted above, we performed numerical calculations for a 
parallel-flow heat exchanger with two parallel rectangular channels (in the general case, 
we examined channels of different cross sections). Since the mathematical model made pro- 
vision for the occurrence of either exothermic or endothermic reactions in the exchanger, 
we examined a case in which these reactions were present. On one side of the exchanger, 
the parameters of the heat-transfer agent are such that the chemical reactions occur at a 
high rate. On the other side, the parameters are such that the flow is nearly "frozen," 
i.e. the forward and reverse reactions are in thermodynamic equilibrium. Such a choice of 
parameters allowed us to study and compare the specific features of heat transfer in the 
presence of chemical reactions and in their absence. 

Table i shows values of the thermohydraulic parameters of the heat-transfer agent at 
the inlet of the exchanger. 
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Fig. i. Modeled element of heat exchan- 
ger; conditional subdivision of the region 
into finite elements; A - isoparametric 
square tetragon. 

TABLE i. 

Uin~ m/sec ! ,, J . . . . . .  Tir~ K 

Values of Geometric and Thermohydraulic Parameters 

Dimensions of sides.} ..... 
of channels m | ,nlcKness o~ . 

- + 7 ' -- ..~ partition be- 
I j tween channels, 

I [ II t ~  

600 3 [ 6 450 000x00 i000x003  I 

Fig. 2 .  Isolines of mean velocity U, m/sec, for channel sections different distances 
from the inlet (in the stabilization region): i) 0.91; 2) 1.83; 3) 2.74; 4) 3.65; 5) 
4.57; 6) 5.48; 7) 6.39; 8) 7.31; modes I-IV correspond to z/d = 1.0; 2.0; 3.0; ~.0. 

f/ I// 
2V 

Fig. 3. Isotherm of averaged temperature T, K, for sections located different distances from 
the channel inlet: i) 504.1; 2) 506.4;3) 508.7; 4) 510.9; 5) 513.2; 6) 5i5.6; 7) 517.8; 
8) 520.0; modes 1-IV correspond to z/d = 1.0; 2.0; 3.0; 4.0. 
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Fig. 4. Local Nusselt numbers on the hot (i) and cold (2) 
sides of the dividing wall; modes 1-IV correspond to z/d = 
1.0; 2.0; 3.0; 4.0. 

~wa'18 -3 

#~0 ' b a a 

3,O ~600 
t~OO 

I ~ 1288 

. . . .  z soo ' l\ . . . . . . . .  ' '  " 2  Oo , 2 , ,.,o- [o  1o- 

~2 

Fig. 5. Local shear stresses ~wa (a) and heat flux Q (b) on 
the dividing wall on the sides where the heat-transfer agent 
is hot (i) and cold (2). Q, W/m2; Twa, N/m2; H, m. 

The formation of the velocity and temperature profiles along the Z axis (downstream) is 
shown in Figs. 2 and 3, where modes I-IV correspond to sections different distances from 
the inlet. The velocity profile changes more rapidly around the thermally insulated (adia- 
batic) walls of the channels. It should be noted that distinct maxima are formed with in- 
creasing distance from the inlet (as is evident from Fig. 2), these maxima being localized 
around the sides of the channels adjacent to the partition. The shear stresses on the sur- 
face of the dividing (heat-transmitting) wall have peak-like maxima (Fig. 5a). The maximum 
shear stress is reached in the neighborhood of the interior right angle. The peak-like 
(nonsmooth) maxima are due to the fact that the theoretical symmetry cell (modeling the 
region of interest) was constructed with the use of mathematical right angles, i.e., angles 
without curvature. Such corner points are essentially singular points where the normal 
derivatives undergo a discontinuity. 

In contrast to the case of velocity, calculation of the temperature profile is done 
with the use of homogeneous boundary conditions of the Neumann type (lines of symmetry and 
triviality of the normal derivatives at the boundaries of the region). Figure 4 shows the 
specifics of the heat transfer process in the given case of a chemically reactive heat car- 
rier. The figure shows the distribution of the local Nusselt numbers along the dividing 
wall on the hot and cold sides of the wall, respectively. 
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The first two modes are characterized by qualitatively identical physical patterns and 
quantitative differences in heat transfer (which is understandable, since the top curve 
pertains to the hot channel and the bottom curve to the cold channel). However, the pat- 
tern then undergoes a qualitative change, and in modes III and IV there appear minima in 
the distribution of Nu on the hot-gas side near the corner regions (at the base of the par- 
tition). This development is due to stagnation of the flow in these regions and a conse- 
quent reduction in the rate of heat transfer. The lower curve pertains to the heat-trans- 
fer agent, where the reaction is "frozen" at the channel inlet. The qualitative behavior 
of the curve is no different from that of a corresponding inert heat carrier. 

The same factors are responsible for the qualitative difference in the behavior of the 
curves of the distribution of heat flux along the corresponding sides of the partition (Fig. 
5b). 

In conclusion, we should note that the calculations were performed on an ES-1061 com- 
puter. Less than i min of processor time was used on each step. We used both service pro- 
grams based on the Grafor system and "home-grown" (specific for the FEM) graphics programs 
for post-processor analysis of the results. The initial data was generated with a special 
module for automatic data preparation. The program was tested by the usual techniques - 
by using test functions and by comparison with experiments and analytical solutions. 

NOTATION 

- f fluctuations of velocity in the i-th direc- U~ mean velocity in the !-th direction; ui, 
tion; C, mean concentration; T, mean temperature; p, density; X, thermal conductivity of 
the wall of the channels; ~, viscosity of the heat-transfer agent; Pr, Prandtl number; 
PrD, diffusional Prandtl number; OR, source (sink) of heat due to chemical reactions; @i, 
internal heat release in the channe ! walls; IR, source (sink) of mass in the chemical reac- 
tion; S, cross section of channel; P, mean pressure; n, normal vector. 

i. 

2. 

3. 
4. 
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